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Exact probability function for bulk density and current in the asymmetric exclusion process
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We examine the asymmetric simple exclusion process with open boundaries, a paradigm of driven diffusive
systems, having a nonequilibrium steady-state transition. We provide a full derivation and expanded discussion
and digression on results previously reported briefly in M. Depken and R. Stinchcombe, Phys. Re93Lett.
040602(2004). In particular we derive an exact form for the joint probability function for the bulk density and
current, both for finite systems, and also in the thermodynamic limit. The resulting distribution is non-
Gaussian, and while the fluctuations in the current are continuous at the continuous phase transitions, the
density fluctuations are discontinuous. The derivations are done by using the standard operator algebraic
techniques and by introducing a modified version of the original operator algebra. As a by-product of these
considerations we also arrive at a very simple way of calculating the normalization constant appearing in the
standard treatment with the operator algebra. Like the partition function in equilibrium systems, this normal-
ization constant is shown to completely characterize the fluctuations, albeit in a very different manner.
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[. INTRODUCTION space. Apart from this, there is also the fact that ESS’s with
i o i i ) _ short-ranged interactions genericaliye., in the absence of a
Since it is typically not feasible to describe macroscopicspontaneously broken continuous symmetry and not at a con-
complex systems in terms of the exact dynamical evolutioninuous phase transitionhave finite correlation lengths.
of their microscopic degrees of freedom, our knowledge ofTherefore one can adopt an ensemble approach to fluctua-
the collective properties of such systems has come mainlyions for many-particle ESSEL]. For a NESS, on the other
through using the methods of statistical mechanics. The sysiand, there can exist long-range correlations even when the
tems are there described by a reduced set of varighl®ts system is not externally tuned to be at a phase trandiipn
necessarily in a direct correspondence to any physical obFhis observation has led to the ideas of self-organized criti-
servables evolving according to stochastic dynamics, mod-cality, whereby the system generates infinite correlation
eling the effect of the suppressed degrees of freedom. Fdengths by self-adjusting its state to a critical stg@é By
equilibrium systems this approach has been extremely fruithow there are also examples of noncritical NESS'’s, which
ful. On the other hand, recent insights into the properties oftill show infinite correlation lengthgl—6] or (as in the sys-
nonequilibrium steady statedNESS'9 have come largely tem studied beloywhere boundary driving is felt through-
from specific microscopic studi€see below and our gen-  0ut the system.

eral understanding of these steady states is still far inferior to Faced with these complications one does wisely in utiliz-
that of equilibrium steady stat¢ESS's. ing methods that have proved their worth elsewhere. One

On a phenomenological level, the distinction betweenh'ghly effective tool within the study of ESS'’s is the use of

ESS's and NESS's lies in that only the latter allow for netSpeC'f'C simplified and abstracted models. Among these are

- ) S the classical- and quantum-magnetic models, the Ising
prob_ablhty currents through t_he state spdire equilibrium model, and the Heisenberg models to name only two. These
detfallegl balance excludes_ th|§'he_ currents are set up and models were initially only hoped to give a qualitative de-
mamtqmed by contacts with multiple reservoirs at d”cf(':'r_(':'mscription of the physical systems. They retain only some of
potentials(e.g., different temperature or c_hem|cal potential the essential ingredients, while leaving out enough of the
and/or by the presence of nonconservative ,bUIk forces. W etails for progress to be possible. With the advent of renor-
will refer to the former case as a boundary driven system an

; alization group argumen{g] and the implied universality,
to the latter as a bulk driven system. On a formal level thethese models are now known to also give quantitative pre-

difference betwe_en an ESS and a NESS “GS in that for @Bictions, and the study of simple models is now a fundamen-
ESS the probability weights of different configurations areq| part of the understanding of ESS's.

governed by detailed balance, while there is no such generic Led by this and the fact that universality seems to be a
':ﬁlee gg:]f%llj\lriﬁosﬁscignjel\cllllzjggtlérglerm?qra?it())ar‘ibIlilr?g\(/:vr\w,vzgms Ofyeneric feature also of the long-wavelength and low-

. : . frequency degrees of freedom of NES$&, much of the
trast the Gibbs weights of an E&ind the lack of d?ta"ed. effort within the study of NESS’s has focused on particular
balance allows for net currents through the configuratio

Simple models. Here we study a well-known simple D+1
model of a driven diffusive system, the asymmetric simple
exclusion procesfASEP. It belongs to the class of stochas-
*Present address: Instituut-Lorentz, Leiden University, P.O. Boxic interacting particles mode|€], and the particular version

9506, 2300 RA Leiden, Netherlands. Electronic addresswe choose to study is driven from both the boundary and

depken@lorentz.leidenuniv.nl bulk. This model is nontrivial, displaying macroscopic col-
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| | namical rules of the ASEP.

lective behavior in the form of both continuous and discon-site of the lattice, it is ejected with the probability rg@eNo
tinuous boundary-induced phase transitions. It is yet simpléurther transitions are allowed. We will here limit our con-
enough to be integrablgl0-13. It is of additional interest siderations to the case where we can view the boundary rates
since it maps onto certain growth modgfs, it models traf-  as deriving from particle reservoirs. We therefore take 0
fic flow [14], and it is believed to describe the large-scale<a=pi<1 and 0<B=1-p gy <1, Whereper and pyign
dynamics of the noisy burgers equatiph5-17 and the are the particle densities of the reservoirs.
Kardar-Parisi-ZhangKkPZ) equation17,18. There has been
much progress in the analytical treatment of the ASEP, giv-
ing rise to a host of exact results describing its steady-state
properties[10-13,19-22 The probability measure of this ~ This model has been exactly solvedl] in the sense that
model [and of certain other one-dimensional modédee, the steady-state probability of any given microscopic con-
e.g., Sec. 6 of17])] turns out to be a generalization of the figuration can(in principle) be calculated by applying a
trivial product measure, where instead of a measure built ugiven set of algebraic rulgslescribed beloy This though is
of commutingc numbers at each spatial position, the mea-far from what we are used to refer to as a solution in equi-
sure is constructed by assigning noncommuting operators tibrium statistical mechanics. There we are in a better posi-
each spatial positiorifor further details see belowEven tion already from the start in that the configurational weights
though the fact that the system maintains a current is ultiare explicitly given, while for this model they are given only
mately what sets it apart from an equilibrium system, thein terms of algebraic rulefor matrix multiplication in case
results so far concerning the currents are mainly for systemge have a finite matrix representation of the operator algebra
with periodic boundaries or infinite geometries with special(see below]. In equilibrium it is normally the successful
initial conditions[19,22-24. summation of the partition function that is considered a so-
In this paper we expand the discussion and digress olution of the problem. Even so, the algebraic rules yield a
what was briefly reported if25]. We will derive the exact Wwealth of information about the system. Especially they can
joint probability distribution for the system-averaged currentbe used to deduce the precise form of the phase diagram
and density, as well as their asymptotic form in the thermo{11]. It consists of three pari&, B, andC, as given in Fig. 2.
dynamic limit. This is a step closer to the achievements of In partA, the low-current, high-density phase, the average
statistical mechanics for ESS’s, and comparable to summingulk profile pj=(n;) is flat in the bulk withp,=pgy=1-8
the partition function, but it is system-specific. and the current ig;=B(1-8). The average bulk profile is
The paper is organized as follows: Section Il gives thecompletely dictated by the right-hand-side reservoir. The
definition of the model, recapitulates a few known results, apulk profile connects to the value of the left reservoir
well as giving a brief introduction to the operator algebraicthrough an exponential decay, with some characteristic
approach. This is followed by Sec. Ill where we introduce a
novel way of calculating the normalization faci@irst intro- 1
duced in Sec. Il Band further introduce a “relaxed” operator
algebra, with which help we are able to calculate the exact
form of the density-current probability function. This is
complemented by a study of the thermodynamic limit. In
Sec. IV we translate the results into the language of the KPZ
equation. The details of the calculations of the preceding A |
. . . a 0.5 -4+ —————————e e
sections are recorded in the appendixes. .

A. Phase diagram

@

II. MODEL DEFINITION AND SOME KNOWN RESULTS ’

We consider the totally asymmetric exclusion process on .
a finite chain of size&- with open boundaries. The site label ’
runs from left to right(see Fig. 1L 0z !

Each site on the lattice can be occupied by no more than 0 05
one particlen, € {0,1}. Given that the right neighboring site ﬁ
of an occupied site is empty, the occupying particle will
jump to the empty site with rate 1. If the first site on the FIG. 2. Phase diagram of the one-dimensional exclusion pro-
lattice is unoccupied, particles are injected at this boundaryess. The dashed and dash-dotted lines indicate, respectively, first-
with rate @. Further given that we have a particle at the lastorder and continuous transition lines.
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length. The situation is reversed By the low-current, low- then use these to calculate the microscopic probabilities. This
density phase, in that the bulk density profile is dictated byjustifies calling these states matrix-product states. Even
the left reservoir, withp=per=a andj=a(1-a). The decay though we now have a way of getting the steady-state weight
of the density profile to the right boundary valpgy,=1  of any specific configuration, actually calculating this num-
-8 is also here exponential. Separating the two phases islzer becomes increasingly hard as one considers larger and
phase transition at which the typical bulk profile develops darger systems. Thus one wishes to extract general informa-
kink, taking the density from the value of the left reservoir totion directly from the algebraic rules, without explicitly cal-
the value of the right one. The kink is of finite extension andculating the microscopic weights. This is done for both av-
equally likely to be situated anywhere throughout the bulk.erage density and currentfihil], and we here just recall that
When passing over this transition line the density is disconit is in general very easy to write down the desired quantities
tinuous, and the border betwedrandB is thus a first-order in terms of the above-defined operators:
nonequilibrium phase transition. Such a boundary-induced def
phase transition has no counterpart in equilibrium systems pi=(n) =(a|C"IDC|B)/Z2#,
where boundaries are assumed irrelevant. The remaining re-
gion, regionC, is called the maximal-current phase. Here the gt
bulk properties are set by the bulk drive; i.e., in this phase j=(n(1-n,,)) =<a|C"1DECL"‘1|B)/Zﬁﬁ=23_1/235,
both the injection and ejection rates are high enough for the
system only to be limited by the transition rates in the bulk. def
The bulk profile is given byp=1/2 andj,=1/4. In this C(l,m) ={nny =(a|CIDC™'"IDC"M B)/Z{.
phase the decays from the boundaries are algebraic.

A nice heuristic argument for the form of the boundary
decays has recently been presented2@]. The transitions
from A or B to C induce a jump in neither the average den-

The first two quantities can be calculated asymptotically for
largeL and fixedx=n/L [11], giving the phase diagram dis-
cussed above. Many of the results for these systems have
sity nor current, and thus these transitions are continuous. A een derived through finding a matrix representation of the

we will argue later, they are in fact second order. The poinpperator algebra. If there exists a finite-sized matrix repre-

where all regions meet is called the critical point. These reSentation, then the above form of the correlation functions

sults can all be derived by utilizing the matrix algebra out—ShOWS that the inverse correlation length is simply propor-

lined below. Further results containing information about thetlonal o the highest e|gen\_/a_lue of the matrix representation
f C. Thus, only when no finite representation can be found

time evolution of the system can be derived by Bethe-ansat? . . P .
methods[16,20,27,28 IS it possible to have an infinite correlation length and alge-

braic decay of correlations.

B. Operator algebra . MACROSCOPIC DESCRIPTION

We here outline the operator algebra as givefLI] since As is the case for ESS'’s, the transition from a detailed

we will be using and generalizing this. The starting point iSmicroscopic knowledge about the weights of each configu-
fo represent any microscopic configurations in terms of Jation to information concerning macroscopic properties of

string .Of honcommuting operqtol':l;andE, corresponding to the system is in general highly nontriviedf. summing the
a particle and a hole, respectively. It can then be shown th artition function. Here, though, we are faced with one ad-

the steady-state probability function can be written in term itional problem in that we do not have the microscopic
of this operator string and two auxiliary vectdis| and|B) weights explicitly, but only a set of algebraic rulé® or as

according to a string of possibly infinite matrices. Thus, as mentioned
P.{{n)) = (ZF) NalX(n)X(ny) - - X()|B). (1) above, we need to extract macroscopic quantities directly
through using the algebraic rules. One macroscopic quantity

Here the operatoX(n)) equalsD if there is a particle at site that has been likened to a partition function of this nonequi-

| (n;=1), andE if site | is unoccupiedn;=0). The vectorsa| librium system is the normalizing constazft’ [29]. Though

and |B) describe the properties of an uncorrelated particlét lacks the power of yielding moments through differentia-
reservoir. The state-independent fac#®=(a|(D+E)%|8)  tion, it generates a form of Lee-Yang theory of these non-
ensures the proper normalization. For E#). to hold true, equilibrium phase transitions. Through the considerations in
the operators and vectors must further satisfy the algebraithis section we will further see that the normalizing constant
rules still plays an instrumental role in determining the complete
def statistics of the bulk densities and currents in this honequi-

and we may take the normalizations of the vectarsand A. Generating function for Z#

(Bl to be such thata| B)=1. The algebraic rule) are now As a warm-up to what will follow and since the normal-

all that is needed to calcula@f({m}), resulting in a poly- ization constant plays a central role in later developments,
nomial of degred. in 1/« and 1/3. An alternative approach we here present a novel and very simple way of calculating
is to look for matrix representations of the algelfga and Zf’ﬁ. This is done through calculating the generating func-
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tional of the normalization constant, an approach recently o8 B(1 - 2a) 1
used in[30,31]. We define the generating functional as L (B-a)(1-a)a-(1-a) a<1/2B,

X

G (p) = X utzi? <al[ } B, 3 i
L=0 1-2 L
_ _ zp L2 L g1z, (@
where for an arbitrary operatd¢ we have defined (1-a) a(1-a)
1 def X
{—] => Xt (4)  The asymptotic forms forw> g can be obtained through
1-Xl1x (= realizing that the system exhibits a particle-hole symmetry.

That is, instead of focusing on the particles we might just as

well consider the holes as evolving with exactly the same
1 B o1 dynamics, but with the injection and ejection rates ex-

(1-uX) 1—uX |y 1+0(p™). (5) changed. Thus we can directly get the result for 8 by

X letting «— B and B8— « in the above.

HereX is some finite integer, and it immediately follows that

From the operator algeb(@) we have

(1-uD)(1-uE)=1-u(1l-uC, B. Bulk current-density probability function

and inverting this in the sense of EG) we get Though the normalization constant considered above has

1 _ 1 1 o1 some of the _features of the gqui_librium partition function, it
1-u(1-uC Tl 1-uE 1-uD +0O(u™) does not in its present applications tell us much about the
HAE TR X =X H= X moments of the two natural observables of the system: the
In the above we note that dfi's are to the left of allD’s. density and current. Thus we here concentrate on the deriva-
Since(a| and|B) by definition are respective eigenvectors of tion of the exact joint probability function for the average

these operators, we have density and current throughout the bulk. Through this we
will see how the normalization constant also here tells us

G™(u(l-p) = [ L } [ 1 } +O( XY, about fluctuations, albeit in a manner very different from that
1-pla x| 1-ulB of equilibrium statistical mechanics. This is done for any

ystem size, and later the thermodynamic limit is also con-
Sidered.
First we define the total activity within the system as the
number of bulk bonds that can facilitate a transition of a
a B particle in the immediate future—i.e., the total effective bulk
o Mm transition rate. The bulk current is then defined as the activity
divided by the system size. For any given state the activity
There now exists an open region around the origin where thiequals the number of pairs of neighboring sites that have a
can be rewritten as particle to the left and a hole to the right. To get a handle on
the activity J of a microscopic configuration dfl particles
2a 2B . :
/ : . we choose to represent such a configuration by a sequence of
20=1+V1-4u2B-1+N1-4u J objects of the fornDPE, p;, h; =1, possibly padded with
E’s to the left andD’s to the right. Each of these objects
contains what corresponds to an active bond, and using these
objects we can write any microscopic steady-state measure

708 — fﬁ du () as
L
C

In the limit X— o, the above expression has a convergencé
radius of mirfa,B)>0. Thus as long as we are within this
we can take this limit and write

G*A(u(1 - p) =

GP(u) =

The expression can be analytically continued topafind is
inverted through

—_— 6
#27Ti uttt ©
R = (7aB\-1 ho(pP1ENL) - .. (DPIENDP
whereC,, encircles only the pole at the origin and does so Psd{pj.hj}) = (Z{*) " a|E"(DPE™) - - - (DPE™)DPo| B),
once in the positive direction. This can be used to derive the

same finite-size form o as given in[11]: by appropriately choosing the numbégs, h;} andJ. It fur-
(2L - = 1)! ther follows that the above expression is uniquehdfpg

ze _E ALIE = A= g (7) =0 and the rest satisfit;, p;=1. We can now in principle
=1 k=0 LI(L-n! calculate the joint probability distribution foX and J by

1;.lmming the above over dfl’s and p;'s consistent with a
One can also perform a large-system asymptotic analysis o

Eq. (6) using steepest-descent methods, which again y|eld§peCIfIC number of partlcle(sEJ oPj=N) and a given system
the same results as [A1]: ze (N+EJ oh;j=L). Choosing to enforce these constraints

™ Wlth contour integral representations of the Kronecker delta,
4 01,3 atp-1 the expression for the joint particle-activity probability func-

aB __
Za L1327 (2a - 1)2(28 - 1)’ 12<a<p, (8 tion can be written as
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L N.L-N quantities in it are known exactly, it yields both the exact

P*(N,J) = D, > Pss({pj,hj})ﬁzpj,Nﬁzhj,L_N finit-system-size form oP{**(N,J), as well as the asymptotic
Po:No=0 p.hy=1/=>1 form in the large-system-size limit. Using the above expres-

aB dzdz 1 1 sion it is further easy to derive a similar form for the joint
=— (a] generating functional of the density and current. This is out-

- )2 N+1-J5E-N-J+1 (-, _ —
2 Je,c; (2m)" 22 (z-Bz-a lined in Appendix B, while we go on here and present exact
([ 1 } { 1 } )J| and asymptotic results for the probability function.
B). (10
1-2D In L-N-1

1-zE

C. Exact results for finite systems
HereC, (Cy is a directed contour that encircle the pole at the

origin of the complesx (z) plane once in the positive direc- ¢ ,chy's integral theorem. All we need to do is to calculate
tion, with |7 < B(|Z < a). The first step toward explicitly cal- o coefficient of the term proportional 21 in the

culating Eq.(10) is through considering the properties of | 5 rent-series expansion of the integrand in @d). For the
involved operator product. Surprisingly one can sh@ee special casd=0 we havez?# =1 and thus
Appendix A that a slight modification of the above opera- >P - L

The integral in Eq(14) is easily calculated with the help

tors, o 1 N LN
def L Pl (N’O)_Z_ﬁﬁ(ll'g) (L),
D'=[1-(z+2]| ——= D,
1-7D Jn-a This is obviously correct since the inactive state must have
ot L—N empty sites followed by filled sites. In Appendix C
© 1 e consider the cas&=1. The result is
E’z[l—(z+§3][—_} E, (11) " I o
1-zE || 1 5 J j L-N-JN-J
a _ 83
satisfies the “relaxed”operator algebra PEA(N,Y) = Z_aﬁE AJ,JE > >
L j=1 k=0 c=0 d=0
[ =Y N 2 N ZL-N
D'E'=D'+E'+0(z".2"7). (12 X Gy (@) Gjka( B H23-j L -N-3-cN-3-d» (15)
The new relaxed eigenvectors and eigenvalues are simplyith the combinatorial factors
given by
1 L Gl = <k+ c) 1
D|)=6) 5, + O, (alE’=(al+OE™), K@=\ ¢ ) gl
with the eigenvalues defined as ho - (K -l+a+ e)(a+ e)
,d_ef a—-7 ,d_Ef B-z (13) Kae™ ate e '
T 1-(z+2)’ F= 1-(z+2)° Through the above we now have the exact form of the

. . sought-after joint probability function for any system size.
The fact that these eigenvalues are complex is of no concer. 9 J b Y Y sy

. . o L . “"he form is illustrated in Fig. 3.
since we consider only finite polynomials in the inverse ei-
genvalues. Any result is thus uniquely extendable into the
complex plane through analytic continuation. We can rewrite
Eq. (10) in terms of the primed operators and start using the We here return to Eq14). Using the asymptotic form of
relaxed operator algebra to transform the expression. Thghe normalizing constant given in Eg®8) and (9), we per-
result of any such manipulation would, according to theform a steepest-descent calculation to get the asymptotic re-
above, be the same up to terms of ordéandz"™N, as if the  sults in the large-system limit. We consider the different
operator algebra would have been exact. Terms of this ordgrhases individually. Due to the particle-hole symmetry
have no effect under the contour integral in Eif) since the  P#(N,J)=PP*(L-N,J), it is only necessary to explicitly
poles at the origins are of order equal to or lower theand  consider the case < g.
L-N, respectively(The case fod=0 is trivial.) Thus, using First turning to the maximal-current phase we use Eq.
the new algebra to perform any manipulation within Ef)  (14) together with Eqs(8) and(13), and drop all prefactors
is equivalent to using the exact algebra. Therefore we cathat are independent & andJ (this will be done through-
write out), to write

epf dxdz 1 ooy A f Gz 1 1

Zf_"ﬁ CZ’C?(zﬂ.i)ZZNﬂ—JEI:—Nﬂ—J L7(N,J) B2 cz,c?(zﬂ.i)ZzN—MlEt—N—hl [1-(z+2)]??

X Z ’ (14 X 1
(z-PBEz-a)[1-(z+D* [20-1+(z-2428-1-(z-D

This expression is the main result of this work, and since allThe asymptotic behavior of these integrals is in principle

D. Thermodynamic limit

P(N,J) =
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_a=0.75,p=0.75

a=0.5,$=0.5 A d 0=0.25<f

FIG. 4. (Color onling The two rows display a surface and a
contour plot of the leading behavior of the asymptotic joint prob-
ability distribution. The calculations were performedat the injection
and ejection rates indicated and at a system of Isizd0 (to make
the result comparable to Fig).3

Eq. (16) is unknown, it should be pointed out that the size of
this region is a finite fraction of the complete rangepaind
j (as long as the system is away from any phase bounglaries
In the first row of Fig. 4 we show the resulting dominating
asymptotic plots.

We now turn to the low-current, low-density phase. Using
Egs.(14), (9), and(13) we have

P8 1) 3€ dzdz’ 1
L (p:) cz,c7(277i)2 NI IE-N-0+1
FIG. 3. (Color onling Each row contains a surface and a con- 2-1+z-7 1

tour plot of the exact joint probability distribution for the values of P == T PP T
a andB indicated, and witp=N/L andj=J/L. The first three rows B-a=-(z-2(a-2"(1-2-a)
illustrate the behavior of the probability distribution as the systemThe same arguments as applied in the high-current phase

goes along the line ok =4 through the critical point ak=5=0.5,  gjve the asymptotic probability distribution around the peak.
while the last three graphs illustrate the behavior as the system 99¢%yain it is the saddle points

through the first-order transition at=8=0.25. Overlaid in the con-

tour plots(dashed lingis the curvej =p(1-p) which defines the set . = — 1-p—j

of possible asymptotic average valuesgfnd j throughout the z=""—"01-a), z= 1-
system’s different phasdsot at the first-order transition lineThe P P
system size i4 =40. that dominate. The resulting dominant form is

straightforward to calculate. In practice, though, it turns out ) pP(L-p)t? 1 L
. . - . P*A(p,j) ~ , , -
to be quite cumbersome since one has to determine which of FL"{p:] (1 - a)pjzj(p —)1-p- j)Le]
the saddle points and lower-order poles give the dominant
contributions. We can shortcut this through only considering 17

the asymptotic form in some finite region around the peak ofrpe apove result is directly transferable to the high-density
the distribution. From the general discussions of the phasgp;ge through the use of the particle-hole symmetry men-

diagram in Sec. Il A we know that the average density angjoneq ahove. A realization of the asymptotically dominating
current arex and independent. Thus, the lower-order poles 4t i the low-density phase is shown in the second row of
cannot dictate the asymptotic behavior around the peak valqelg_ 4.

of the probability distribution, and instead this must be set by

: It is clear from the asymptotic forms that the probability
the saddle points

distribution is non-Gaussian in all phases. This is consistent

Z=p-j, Z=1-p-j, p=NIL, j=JL. with the view that long-range correlations are a generic fea-

) o i ture of nonequilibrium systems with locally conserved dy-
A saddle-point approximation thus results in namics[32]. Sufficiently close to a phase transition, any fi-
1 L nite system will reach a point at which the region of validity

P¥(p,j) ~ <j2j(p_ D 1-p- j)l_p_j> ., (16)  of the above asymptotic forms shrink to the size of the typi-

cal fluctuations. When this happens the system crosses over
where we for simplicity have dropped all the subdominantto a situation where the fluctuations are governed by the tails
prefactors. Even though the extent of the region of validity ofexcluded in the above development.
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It is interesting to note that if we consider the probability p=(1 _%)/2, j=v,
density of the current at a fixed density, we recover the same
functional form as derived ifi33] for the probability density a=(1 _%h D2, B=(1 +%| )I2
e 1 rig l

of the current in a closed periodic system.

into the probability distribution for the ASEP. It is further

clear that when the average slope at the left boundary,

dher=1-2a, matches the slope at the right boundary,
It is interesting to note that as the continuum transition isdhyign=26—1—i.e., whena+ S=1—we are at the trivial line

passed, the asymptotic forr(lss) and(17) indicate that there of the ASEP where the matrix-product measure reduces to a

will be a jump in the density fluctuations of the system. Moreproduct measure. Situations where more complicated bound-

precisely, in the low-current, low-density phase we have ary conditions are relevant have recently been examined ex-

i perimental and theoretical {126,34.
(8p%) <5p5j>)

(6p8))  (41?)

- M( 1 1-2 ) In this paper we have examined the joint probability dis-
L 1-20 1-3a(l-a)/’ tribution of the system-averaged density and current. We
have derived an exact expression for the joint probability
function for finite systems and also considered the thermo-
ChdB) =CL 41-8), dynamic limit. This was done by introducing a relaxed op-

T o . erator algebra, and it would be very interesting to examine if

for the low-current, high-density, phase. In the maximal-the same “trick” could somehow be applied to the partially

E. Fluctuations

Cfc,ld(a) = (
V. CONCLUSION

Using the particle-hole symmetry we have

current phase we have asymmetric exclusion process. This is especially important
1/1/8 0 since this model interpolates between a ESS and NESS. The
Cre~ E( 0 1/16)' development further shows that even if the normalization

constant does not act as a partition function in the normal
Thus as we go from either of the low-current phaegions ~ Sense of giving moments through differentiation by a conju-
Aor B in the phase diagram in Fig) B the maximal-current  9ate field, it nevertheless completely governs the fluctuations
phase(region C in Fig. 2), there will be a jump in the cor- through Eq.(14). Sufficiently close to a phase transition, any

relator finite system will reach a point where the above- derived
asymptotic forms are not valid. Thus it would be interesting

ACE ~ — }(1/8 O) to derive the full asymptotic form of the probability distribu-
L\o o/ tion, including the tails. We have also shown that the con-

) ) L ) _tinuous transitions are second order in the sense of equilib-
Since we here have a discontinuity in the density fluctuationgjym statistical mechanics and that it is the density
as we pass over the continuous phase transition, we see thgfctuations that display a discontinuity. Last, we wrote down
this transition is of second ordécf. equilibrium statistical  the translation of the probability density for the asymptotic
mechanics where a discontinuity in the correlator correASEP to the probability density of the KPZ equation in terms

sponds to adiscontinuity in the second-order derivative of thef the average slope of the interface and the average interface
free energy. The sign of this jump also illustrates that the yg|ocity.

strength of the fluctuations decrease as we enter the
maximal-current phase. ACKNOWLEDGMENTS
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The ASEP can be mapped onto a lattice growth model
[8,17], which in turn is believed to share its long-wavelength APPENDIX A: THE RELAXED OPERATOR ALGEBRA
characteristics with the KPZ equation. Within the framework

of this standard mapping it follows that the growthvelocity . The major problem with calculating the probability func-

and the average slope of the interface are, respectively, givetﬁ)n as given in Eq(10) is the appearance of the product of
by the operators

B — 1 1

=j, dh=1-2p. [ } D, — | E,

Letting o'?h|,eﬂ,rigm denote the enforced boundary slopes, we

can get the joint slope-velocity distribution for the interface where all theD’s are to the left of all thé’s. By considering
model by substituting this product we will uncover operator relations very similar
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to those of the original operator algeli®. Using the origi-  origins of both thez andz planes. This is done in the present

nal algebra we can write section. First we write down the complete expressionfor the
probability function, given the exact form of the normalizing
[ 1 } [ 1_ } { 1 ] [ 1_ } constant as shown in E¢7):
1-2zD |y 1-zE|x |1-2D |y | 1-ZE | | |
(1-[z+2])
+[ : }E — | %AL%(a 76-2%
1-2D |y | 1-ZE |}
(A1) Thus we have
From the inversion relatiofb) we have " ,8 dzdz 1
© I:)LB(N J)= E ALIE § 2 N+1-J5E-N+1-J
1 1 = C,Cr (2mi)z z
=1+uX +O(MY,
X .
and using this in the right-hand side of 1) it is easily (a=2"%B-2)" k+l(1 -[z+Z)*"

seen that Eq(AL) is equivalent to We proceed by considering the expansion factor by factor in

1 1 their respective Laurent series around the origins. The first
(1-[z+2]) 1-D D 15 |- two factors are given by the expansion
X X

1
= [ = } D+ ! E +O(Z¢L 7). a1 2 G ()7,
1-7D |y 1-7E (a-2)
(A2) with
It is now clear that the operato¢$l) will satisfy the relation k+c\ 1
(12). In terms of the operatord.1) the central operator prod- Gycla) = “aorl’
; c /o
uct in Eq.(10) reads
[ 1 } [ 1 } . DE while the last factor expands as
1-2D |\ 1-ZE |,y (1-[z+Z])?* 1
N o = E Haj- |aeZezal

(1-[z+2Z)?" a,e=0
APPENDIX B: GENERATING FUNCTIONAL

with
By using the definition of the generating functional for
Z* Eq.(3), and the integral representation of the joint prob- _(K-1+a+e\fa+te
ability function (14), we can write the generating functional Hicae= a+e e |

for N andJ as
Considering the product of all three factors we arrive at

def *
Fi¥(y,0= 2 PPN, 1
N,J=0 B (a _Ejk+l(ﬁ _ Z)I—k+l(1 _ [Z+ZD2‘H
_aB dzdz 1 1 1

Y G )G (B Hay 0 22

c,a,d,e=0

T z{PJe, o 2m)? Z- a)z- B FEz- vz

X G‘*/B'(—Z3< )
(1-[z+2)?

The contours should be chosen such that the only enclosed

DS Gy c(a)Gi—kd(B)H23-1 a-ce-dZZ°

¢,d=0 a=c,e=d

poles are the ones at the origins. This object has a rather ae
complicated analytical structure and for simplicity we have = 2 | 2 Gl @Gl BHz peced | 2L
restricted our efforts to the probability function. 2,6=0 \¢,d=0

The only terms in this series that will contribute to the prob-
ability density are the ones wit=N-J ande=L-N-J, and

In order to get the exact probability distribution fidrand  thus we have the exact form of the probability function given
J we need to expand the integrand of Ef4) around the by Eq.(15).

APPENDIX C: EXACT PROBABILITY FUNCTION
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