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We examine the asymmetric simple exclusion process with open boundaries, a paradigm of driven diffusive
systems, having a nonequilibrium steady-state transition. We provide a full derivation and expanded discussion
and digression on results previously reported briefly in M. Depken and R. Stinchcombe, Phys. Rev. Lett.93,
040602s2004d. In particular we derive an exact form for the joint probability function for the bulk density and
current, both for finite systems, and also in the thermodynamic limit. The resulting distribution is non-
Gaussian, and while the fluctuations in the current are continuous at the continuous phase transitions, the
density fluctuations are discontinuous. The derivations are done by using the standard operator algebraic
techniques and by introducing a modified version of the original operator algebra. As a by-product of these
considerations we also arrive at a very simple way of calculating the normalization constant appearing in the
standard treatment with the operator algebra. Like the partition function in equilibrium systems, this normal-
ization constant is shown to completely characterize the fluctuations, albeit in a very different manner.
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I. INTRODUCTION

Since it is typically not feasible to describe macroscopic
complex systems in terms of the exact dynamical evolution
of their microscopic degrees of freedom, our knowledge of
the collective properties of such systems has come mainly
through using the methods of statistical mechanics. The sys-
tems are there described by a reduced set of variablessnot
necessarily in a direct correspondence to any physical ob-
servablesd evolving according to stochastic dynamics, mod-
eling the effect of the suppressed degrees of freedom. For
equilibrium systems this approach has been extremely fruit-
ful. On the other hand, recent insights into the properties of
nonequilibrium steady statessNESS’sd have come largely
from specific microscopic studiesssee belowd and our gen-
eral understanding of these steady states is still far inferior to
that of equilibrium steady statessESS’sd.

On a phenomenological level, the distinction between
ESS’s and NESS’s lies in that only the latter allow for net
probability currents through the state spacesin equilibrium
detailed balance excludes thisd. The currents are set up and
maintained by contacts with multiple reservoirs at different
potentialsse.g., different temperature or chemical potentiald
and/or by the presence of nonconservative bulk forces. We
will refer to the former case as a boundary driven system and
to the latter as a bulk driven system. On a formal level the
difference between an ESS and a NESS lies in that for an
ESS the probability weights of different configurations are
governed by detailed balance, while there is no such generic
rule for a NESS. Consequently the probabilistic weights of
the configurations in a NESS are nota priori known scon-
trast the Gibbs weights of an ESSd, and the lack of detailed
balance allows for net currents through the configuration

space. Apart from this, there is also the fact that ESS’s with
short-ranged interactions genericallysi.e., in the absence of a
spontaneously broken continuous symmetry and not at a con-
tinuous phase transitiond have finite correlation lengths.
Therefore one can adopt an ensemble approach to fluctua-
tions for many-particle ESS’sf1g. For a NESS, on the other
hand, there can exist long-range correlations even when the
system is not externally tuned to be at a phase transitionf2g.
This observation has led to the ideas of self-organized criti-
cality, whereby the system generates infinite correlation
lengths by self-adjusting its state to a critical statef3g. By
now there are also examples of noncritical NESS’s, which
still show infinite correlation lengthsf4–6g or sas in the sys-
tem studied belowd where boundary driving is felt through-
out the system.

Faced with these complications one does wisely in utiliz-
ing methods that have proved their worth elsewhere. One
highly effective tool within the study of ESS’s is the use of
specific simplified and abstracted models. Among these are
the classical- and quantum-magnetic models, the Ising
model, and the Heisenberg models to name only two. These
models were initially only hoped to give a qualitative de-
scription of the physical systems. They retain only some of
the essential ingredients, while leaving out enough of the
details for progress to be possible. With the advent of renor-
malization group argumentsf7g and the implied universality,
these models are now known to also give quantitative pre-
dictions, and the study of simple models is now a fundamen-
tal part of the understanding of ESS’s.

Led by this and the fact that universality seems to be a
generic feature also of the long-wavelength and low-
frequency degrees of freedom of NESS’sf8g, much of the
effort within the study of NESS’s has focused on particular
simple models. Here we study a well-known simple 1+1D
model of a driven diffusive system, the asymmetric simple
exclusion processsASEPd. It belongs to the class of stochas-
tic interacting particles modelsf9g, and the particular version
we choose to study is driven from both the boundary and
bulk. This model is nontrivial, displaying macroscopic col-
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lective behavior in the form of both continuous and discon-
tinuous boundary-induced phase transitions. It is yet simple
enough to be integrablef10–13g. It is of additional interest
since it maps onto certain growth modelsf8g, it models traf-
fic flow f14g, and it is believed to describe the large-scale
dynamics of the noisy burgers equationf15–17g and the
Kardar-Parisi-ZhangsKPZd equationf17,18g. There has been
much progress in the analytical treatment of the ASEP, giv-
ing rise to a host of exact results describing its steady-state
propertiesf10–13,19–22g. The probability measure of this
model [and of certain other one-dimensional modelsssee,
e.g., Sec. 6 off17gd] turns out to be a generalization of the
trivial product measure, where instead of a measure built up
of commutingc numbers at each spatial position, the mea-
sure is constructed by assigning noncommuting operators to
each spatial positionsfor further details see belowd. Even
though the fact that the system maintains a current is ulti-
mately what sets it apart from an equilibrium system, the
results so far concerning the currents are mainly for systems
with periodic boundaries or infinite geometries with special
initial conditionsf19,22–24g.

In this paper we expand the discussion and digress on
what was briefly reported inf25g. We will derive the exact
joint probability distribution for the system-averaged current
and density, as well as their asymptotic form in the thermo-
dynamic limit. This is a step closer to the achievements of
statistical mechanics for ESS’s, and comparable to summing
the partition function, but it is system-specific.

The paper is organized as follows: Section II gives the
definition of the model, recapitulates a few known results, as
well as giving a brief introduction to the operator algebraic
approach. This is followed by Sec. III where we introduce a
novel way of calculating the normalization factorsfirst intro-
duced in Sec. II Bd and further introduce a “relaxed” operator
algebra, with which help we are able to calculate the exact
form of the density-current probability function. This is
complemented by a study of the thermodynamic limit. In
Sec. IV we translate the results into the language of the KPZ
equation. The details of the calculations of the preceding
sections are recorded in the appendixes.

II. MODEL DEFINITION AND SOME KNOWN RESULTS

We consider the totally asymmetric exclusion process on
a finite chain of sizeL with open boundaries. The site labell
runs from left to rightssee Fig. 1d.

Each site on the lattice can be occupied by no more than
one particle,nl P h0,1j. Given that the right neighboring site
of an occupied site is empty, the occupying particle will
jump to the empty site with rate 1. If the first site on the
lattice is unoccupied, particles are injected at this boundary
with ratea. Further given that we have a particle at the last

site of the lattice, it is ejected with the probability rateb. No
further transitions are allowed. We will here limit our con-
siderations to the case where we can view the boundary rates
as deriving from particle reservoirs. We therefore take 0
,a=rleft,1 and 0,b=1−rright,1, whererleft and rright
are the particle densities of the reservoirs.

A. Phase diagram

This model has been exactly solvedf11g in the sense that
the steady-state probability of any given microscopic con-
figuration cansin principled be calculated by applying a
given set of algebraic rulessdescribed belowd. This though is
far from what we are used to refer to as a solution in equi-
librium statistical mechanics. There we are in a better posi-
tion already from the start in that the configurational weights
are explicitly given, while for this model they are given only
in terms of algebraic rulesfor matrix multiplication in case
we have a finite matrix representation of the operator algebra
ssee belowdg. In equilibrium it is normally the successful
summation of the partition function that is considered a so-
lution of the problem. Even so, the algebraic rules yield a
wealth of information about the system. Especially they can
be used to deduce the precise form of the phase diagram
f11g. It consists of three partsA, B, andC, as given in Fig. 2.

In partA, the low-current, high-density phase, the average
bulk profile rl =knll is flat in the bulk withrl =rright=1−b
and the current isj l =bs1−bd. The average bulk profile is
completely dictated by the right-hand-side reservoir. The
bulk profile connects to the value of the left reservoir
through an exponential decay, with some characteristic

FIG. 1. Illustration of the dy-
namical rules of the ASEP.

FIG. 2. Phase diagram of the one-dimensional exclusion pro-
cess. The dashed and dash-dotted lines indicate, respectively, first-
order and continuous transition lines.
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length. The situation is reversed inB, the low-current, low-
density phase, in that the bulk density profile is dictated by
the left reservoir, withrl =rleft=a and j l =as1−ad. The decay
of the density profile to the right boundary valuerright=1
−b is also here exponential. Separating the two phases is a
phase transition at which the typical bulk profile develops a
kink, taking the density from the value of the left reservoir to
the value of the right one. The kink is of finite extension and
equally likely to be situated anywhere throughout the bulk.
When passing over this transition line the density is discon-
tinuous, and the border betweenA andB is thus a first-order
nonequilibrium phase transition. Such a boundary-induced
phase transition has no counterpart in equilibrium systems
where boundaries are assumed irrelevant. The remaining re-
gion, regionC, is called the maximal-current phase. Here the
bulk properties are set by the bulk drive; i.e., in this phase
both the injection and ejection rates are high enough for the
system only to be limited by the transition rates in the bulk.
The bulk profile is given byrl =1/2 and j l =1/4. In this
phase the decays from the boundaries are algebraic.

A nice heuristic argument for the form of the boundary
decays has recently been presented inf26g. The transitions
from A or B to C induce a jump in neither the average den-
sity nor current, and thus these transitions are continuous. As
we will argue later, they are in fact second order. The point
where all regions meet is called the critical point. These re-
sults can all be derived by utilizing the matrix algebra out-
lined below. Further results containing information about the
time evolution of the system can be derived by Bethe-ansatz
methodsf16,20,27,28g.

B. Operator algebra

We here outline the operator algebra as given inf11g since
we will be using and generalizing this. The starting point is
to represent any microscopic configurations in terms of a
string of noncommuting operatorsD andE, corresponding to
a particle and a hole, respectively. It can then be shown that
the steady-state probability function can be written in terms
of this operator string and two auxiliary vectorskau and ubl
according to

Pssshnljd = sZL
abd−1kauXsn1dXsn2d ¯ XsnLdubl. s1d

Here the operatorXsnld equalsD if there is a particle at site
l snl =1d, andE if site l is unoccupiedsnl =0d. The vectorskau
and ubl describe the properties of an uncorrelated particle
reservoir. The state-independent factorZL

ab=kausD+EdLubl
ensures the proper normalization. For Eq.s1d to hold true,
the operators and vectors must further satisfy the algebraic
rules

DE = E + D =
def

C, kauE =
1

a
kau, Dubl =

1

b
ubl, s2d

and we may take the normalizations of the vectorsual and
kbu to be such thatka ubl=1. The algebraic ruless2d are now
all that is needed to calculatePss

abshnljd, resulting in a poly-
nomial of degreeL in 1/a and 1/b. An alternative approach
is to look for matrix representations of the algebras2d and

then use these to calculate the microscopic probabilities. This
justifies calling these states matrix-product states. Even
though we now have a way of getting the steady-state weight
of any specific configuration, actually calculating this num-
ber becomes increasingly hard as one considers larger and
larger systems. Thus one wishes to extract general informa-
tion directly from the algebraic rules, without explicitly cal-
culating the microscopic weights. This is done for both av-
erage density and current inf11g, and we here just recall that
it is in general very easy to write down the desired quantities
in terms of the above-defined operators:

rl =
def

knll = kauCl−1DCL−lubl/ZL
ab,

j l =
def

knls1 − nl+1dl = kauCl−1DECL−l−1ubl/ZL
ab = ZL−1

ab /ZL
ab,

Csl,md =
def

knlnml = kauCl−1DCm−l−1DCL−mubl/ZL
ab.

The first two quantities can be calculated asymptotically for
largeL and fixedx=n/L f11g, giving the phase diagram dis-
cussed above. Many of the results for these systems have
been derived through finding a matrix representation of the
operator algebra. If there exists a finite-sized matrix repre-
sentation, then the above form of the correlation functions
shows that the inverse correlation length is simply propor-
tional to the highest eigenvalue of the matrix representation
of C. Thus, only when no finite representation can be found
is it possible to have an infinite correlation length and alge-
braic decay of correlations.

III. MACROSCOPIC DESCRIPTION

As is the case for ESS’s, the transition from a detailed
microscopic knowledge about the weights of each configu-
ration to information concerning macroscopic properties of
the system is in general highly nontrivialscf. summing the
partition functiond. Here, though, we are faced with one ad-
ditional problem in that we do not have the microscopic
weights explicitly, but only a set of algebraic ruless2d or as
a string of possibly infinite matrices. Thus, as mentioned
above, we need to extract macroscopic quantities directly
through using the algebraic rules. One macroscopic quantity
that has been likened to a partition function of this nonequi-
librium system is the normalizing constantZL

ab f29g. Though
it lacks the power of yielding moments through differentia-
tion, it generates a form of Lee-Yang theory of these non-
equilibrium phase transitions. Through the considerations in
this section we will further see that the normalizing constant
still plays an instrumental role in determining the complete
statistics of the bulk densities and currents in this nonequi-
librium system.

A. Generating function for ZL
ab

As a warm-up to what will follow and since the normal-
ization constant plays a central role in later developments,
we here present a novel and very simple way of calculating
ZL

ab. This is done through calculating the generating func-
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tional of the normalization constant, an approach recently
used inf30,31g. We define the generating functional as

Gabsmd = o
L=0

X

mLZL
ab = kauF 1

1 − mC
G

X

ubl, s3d

where for an arbitrary operatorX we have defined

F 1

1 − X
G

X

=
def

o
L=0

X

XL. s4d

HereX is some finite integer, and it immediately follows that

s1 − mXdF 1

1 − mX
G

X

= 1 +OsmX+1d. s5d

From the operator algebras2d we have

s1 − mDds1 − mEd = 1 −ms1 − mdC,

and inverting this in the sense of Eq.s5d we get

F 1

1 − ms1 − mdCGX

= F 1

1 − mE
G

X
F 1

1 − mD
G

X

+ OsmX+1d.

In the above we note that allE’s are to the left of allD’s.
Sincekau andubl by definition are respective eigenvectors of
these operators, we have

Gab
„ms1 − md… = F 1

1 − m/a
G

X
F 1

1 − m/b
G

X

+ OsmX+1d.

In the limit X→`, the above expression has a convergence
radius of minsa ,bd.0. Thus as long as we are within this
we can take this limit and write

Gabsms1 − mdd =
a

a − m

b

b − m
.

There now exists an open region around the origin where this
can be rewritten as

Gabsmd =
2a

2a − 1 +Î1 − 4m

2b

2b − 1 +Î1 − 4m
.

The expression can be analytically continued to allm and is
inverted through

ZL
ab =R

Cm

dm

2pi

Gabsmd
mL+1 , s6d

whereCm encircles only the pole at the origin and does so
once in the positive direction. This can be used to derive the
same finite-size form ofZL

ab as given inf11g:

ZL
ab = o

l=1

L

AL,lo
k=0

l
1

akbl−k, AL,l =
ls2L − l − 1d!

L!sL − ld!
. s7d

One can also perform a large-system asymptotic analysis of
Eq. s6d using steepest-descent methods, which again yields
the same results as inf11g:

ZL
ab ,

4L+1ab

L3/2Îp

a + b − 1

s2a − 1d2s2b − 1d2, 1/2, a , b, s8d

ZL
ab ,

bs1 − 2ad
sb − ads1 − ad

1

aLs1 − adL , a , 1/2,b,

ZL
ab ,

s1 − 2ad2

s1 − ad2

L

aLs1 − adL . a = b , 1/2, s9d

The asymptotic forms fora.b can be obtained through
realizing that the system exhibits a particle-hole symmetry.
That is, instead of focusing on the particles we might just as
well consider the holes as evolving with exactly the same
dynamics, but with the injection and ejection rates ex-
changed. Thus we can directly get the result fora.b by
letting a→b andb→a in the above.

B. Bulk current-density probability function

Though the normalization constant considered above has
some of the features of the equilibrium partition function, it
does not in its present applications tell us much about the
moments of the two natural observables of the system: the
density and current. Thus we here concentrate on the deriva-
tion of the exact joint probability function for the average
density and current throughout the bulk. Through this we
will see how the normalization constant also here tells us
about fluctuations, albeit in a manner very different from that
of equilibrium statistical mechanics. This is done for any
system size, and later the thermodynamic limit is also con-
sidered.

First we define the total activity within the system as the
number of bulk bonds that can facilitate a transition of a
particle in the immediate future—i.e., the total effective bulk
transition rate. The bulk current is then defined as the activity
divided by the system size. For any given state the activity
equals the number of pairs of neighboring sites that have a
particle to the left and a hole to the right. To get a handle on
the activity J of a microscopic configuration ofN particles
we choose to represent such a configuration by a sequence of
J objects of the formDpjEhj, pj, hj ù1, possibly padded with
E’s to the left andD’s to the right. Each of these objects
contains what corresponds to an active bond, and using these
objects we can write any microscopic steady-state measure
as

Pssshpj,hjjd = sZL
abd−1kauEh0sDp1Eh1d ¯ sDpJEhJdDp0ubl,

by appropriately choosing the numbershpj ,hjj andJ. It fur-
ther follows that the above expression is unique ifh0,p0
ù0 and the rest satisfyhj ,pj ù1. We can now in principle
calculate the joint probability distribution forN and J by
summing the above over allhj’s and pj’s consistent with a
specific number of particlesso j=0

J pj =Nd and a given system
size sN+o j=0

J hj =Ld. Choosing to enforce these constraints
with contour integral representations of the Kronecker delta,
the expression for the joint particle-activity probability func-
tion can be written as
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PL
absN,Jd = o

p0,h0=0

L

o
pl,hl=1,lù1

N,L−N

Pssshpj,hjjddopj,N
dohj,L−N

=
ab

ZL
R

Cz,Cz̄

dzdz̄

s2pid2

1

zN+1−Jz̄L−N−J+1

1

sz− bdsz̄− ad
kau

3SF 1

1 − zD
G

N−1
DEF 1

1 − z̄E
G

L−N−1
DJ

ubl. s10d

HereCz sCz̄d is a directed contour that encircle the pole at the
origin of the complexz sz̄d plane once in the positive direc-
tion, with uzu,bsuz̄u,ad. The first step toward explicitly cal-
culating Eq. s10d is through considering the properties of
involved operator product. Surprisingly one can showssee
Appendix Ad that a slight modification of the above opera-
tors,

D8=
def

f1 − sz+ z̄dgF 1

1 − zD
G

N−1
D,

E8=
def

f1 − sz+ z̄dgF 1

1 − z̄E
G

L−N−1

E, s11d

satisfies the “relaxed”operator algebra

D8E8 = D8 + E8 + OszN,z̄L−Nd. s12d

The new relaxed eigenvectors and eigenvalues are simply
given by

D8ubl = ubl
1

b8
+ OszNd, kauE8 =

1

a8
kau + Osz̄L−Nd,

with the eigenvalues defined as

a8=
def a − z̄

1 − sz+ z̄d
, b8=

def b − z

1 − sz+ z̄d
. s13d

The fact that these eigenvalues are complex is of no concern
since we consider only finite polynomials in the inverse ei-
genvalues. Any result is thus uniquely extendable into the
complex plane through analytic continuation. We can rewrite
Eq. s10d in terms of the primed operators and start using the
relaxed operator algebra to transform the expression. The
result of any such manipulation would, according to the
above, be the same up to terms of orderzN andz̄L−N, as if the
operator algebra would have been exact. Terms of this order
have no effect under the contour integral in Eq.s10d since the
poles at the origins are of order equal to or lower thanN and
L−N, respectively.sThe case forJ=0 is trivial.d Thus, using
the new algebra to perform any manipulation within Eq.s10d
is equivalent to using the exact algebra. Therefore we can
write

PL
absN,Jd =

ab

ZL
abR

Cz,Cz̄

dzdz̄

s2pid2

1

zN+1−Jz̄L−N+1−J

3
ZJ

a8b8

sz− bdsz̄− adf1 − sz+ z̄dg2J . s14d

This expression is the main result of this work, and since all

quantities in it are known exactly, it yields both the exact
finit-system-size form ofPL

absN,Jd, as well as the asymptotic
form in the large-system-size limit. Using the above expres-
sion it is further easy to derive a similar form for the joint
generating functional of the density and current. This is out-
lined in Appendix B, while we go on here and present exact
and asymptotic results for the probability function.

C. Exact results for finite systems

The integral in Eq.s14d is easily calculated with the help
Cauchy’s integral theorem. All we need to do is to calculate
the coefficient of the term proportional toszz̄d−1 in the
Laurent-series expansion of the integrand in Eq.s14d. For the

special caseJ=0 we haveZJ
a8b8=1, and thus

PL
absN,0d =

1

ZL
ab s1/bdNs1/adL−N.

This is obviously correct since the inactive state must have
L−N empty sites followed byN filled sites. In Appendix C
we consider the caseJù1. The result is

PL
absN,Jd =

ab

ZL
abo

j=1

J

AJ,jo
k=0

j

o
c=0

L−N−J

o
d=0

N−J

3Gk,csadGj−k,dsbdH2J−j ,L−N−J−c,N−J−d, s15d

with the combinatorial factors

Gk,csad = Sk + c

c
D 1

ac+k+1 ,

HK,a,e = SK − 1 +a + e

a + e
DSa + e

e
D .

Through the above we now have the exact form of the
sought-after joint probability function for any system size.
The form is illustrated in Fig. 3.

D. Thermodynamic limit

We here return to Eq.s14d. Using the asymptotic form of
the normalizing constant given in Eqs.s8d and s9d, we per-
form a steepest-descent calculation to get the asymptotic re-
sults in the large-system limit. We consider the different
phases individually. Due to the particle-hole symmetry
PL

absN,Jd=PL
basL−N,Jd, it is only necessary to explicitly

consider the casea,b.
First turning to the maximal-current phase we use Eq.

s14d together with Eqs.s8d and s13d, and drop all prefactors
that are independent ofN andJ sthis will be done through-
outd, to write

PL
absN,Jd ,

4J

J3/2R
Cz,Cz̄

dzdz̄

s2pid2

1

zN−J+1z̄L−N−J+1

1

f1 − sz+ z̄dg2J−1

3
1

f2a − 1 + sz− z̄dg2f2b − 1 − sz− z̄dg2 .

The asymptotic behavior of these integrals is in principle

EXACT PROBABILITY FUNCTION FOR BULK DENSITY… PHYSICAL REVIEW E 71, 036120s2005d

036120-5



straightforward to calculate. In practice, though, it turns out
to be quite cumbersome since one has to determine which of
the saddle points and lower-order poles give the dominant
contributions. We can shortcut this through only considering
the asymptotic form in some finite region around the peak of
the distribution. From the general discussions of the phase
diagram in Sec. II A we know that the average density and
current area andb independent. Thus, the lower-order poles
cannot dictate the asymptotic behavior around the peak value
of the probability distribution, and instead this must be set by
the saddle points

z* = r − j , z̄* = 1 −r − j , r = N/L, j = J/L.

A saddle-point approximation thus results in

PL
absr, jd , S 1

j2jsr − jdr−js1 − r − jd1−r−jDL

, s16d

where we for simplicity have dropped all the subdominant
prefactors. Even though the extent of the region of validity of

Eq. s16d is unknown, it should be pointed out that the size of
this region is a finite fraction of the complete range ofr and
j sas long as the system is away from any phase boundariesd.
In the first row of Fig. 4 we show the resulting dominating
asymptotic plots.

We now turn to the low-current, low-density phase. Using
Eqs.s14d, s9d, ands13d we have

PL
absr, jd , R

Cz,Cz̄

dzdz̄

s2pid2

1

zN−J+1z̄L−N−J+1

3
2a − 1 +z− z̄

b − a − sz− z̄d
1

sa − z̄dJ+1s1 − z− adJ+1 .

The same arguments as applied in the high-current phase
give the asymptotic probability distribution around the peak.
Again it is the saddle points

z* =
r − j

r
s1 − ad, z̄* =

1 − r − j

1 − r
a

that dominate. The resulting dominant form is

PL
absr, jd , S rrs1 − rd1−r

a1−rs1 − adr

1

j2jsr − jdr−js1 − r − jd1−r−jDL

.

s17d

The above result is directly transferable to the high-density
phase through the use of the particle-hole symmetry men-
tioned above. A realization of the asymptotically dominating
part in the low-density phase is shown in the second row of
Fig. 4.

It is clear from the asymptotic forms that the probability
distribution is non-Gaussian in all phases. This is consistent
with the view that long-range correlations are a generic fea-
ture of nonequilibrium systems with locally conserved dy-
namicsf32g. Sufficiently close to a phase transition, any fi-
nite system will reach a point at which the region of validity
of the above asymptotic forms shrink to the size of the typi-
cal fluctuations. When this happens the system crosses over
to a situation where the fluctuations are governed by the tails
excluded in the above development.

FIG. 3. sColor onlined Each row contains a surface and a con-
tour plot of the exact joint probability distribution for the values of
a andb indicated, and withr=N/L and j =J/L. The first three rows
illustrate the behavior of the probability distribution as the system
goes along the line ofa=b through the critical point ata=b=0.5,
while the last three graphs illustrate the behavior as the system goes
through the first-order transition ata=b=0.25. Overlaid in the con-
tour plotssdashed lined is the curvej =rs1−rd which defines the set
of possible asymptotic average values ofr and j throughout the
system’s different phasessnot at the first-order transition lined. The
system size isL=40.

FIG. 4. sColor onlined The two rows display a surface and a
contour plot of the leading behavior of the asymptotic joint prob-
ability distribution. The calculations were performedat the injection
and ejection rates indicated and at a system of sizeL=40 sto make
the result comparable to Fig. 3d.
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It is interesting to note that if we consider the probability
density of the current at a fixed density, we recover the same
functional form as derived inf33g for the probability density
of the current in a closed periodic system.

E. Fluctuations

It is interesting to note that as the continuum transition is
passed, the asymptotic formss16d ands17d indicate that there
will be a jump in the density fluctuations of the system. More
precisely, in the low-current, low-density phase we have

Clc,ld
c sad = S kdr2l kdrd jl

kdrd jl kd j2l
D

,
as1 − ad

L
S 1 1 − 2a

1 − 2a 1 − 3as1 − ad
D .

Using the particle-hole symmetry we have

Clc,hd
c sbd = Clc,ld

c s1 − bd,

for the low-current, high-density, phase. In the maximal-
current phase we have

Cmc
c ,

1

L
S1/8 0

0 1/16
D .

Thus as we go from either of the low-current phasessregions
A or B in the phase diagram in Fig. 2d to the maximal-current
phasesregionC in Fig. 2d, there will be a jump in the cor-
relator

DCc , −
1

L
S1/8 0

0 0
D .

Since we here have a discontinuity in the density fluctuations
as we pass over the continuous phase transition, we see that
this transition is of second orderscf. equilibrium statistical
mechanics where a discontinuity in the correlator corre-
sponds to adiscontinuity in the second-order derivative of the
free energyd. The sign of this jump also illustrates that the
strength of the fluctuations decrease as we enter the
maximal-current phase.

IV. IMPLICATIONS OF THE KPZ EQUATION

In this section we briefly point to the known connections
between the ASEP and the KPZ equationf8,17g and translate
our findings to the language of the KPZ equation.

The ASEP can be mapped onto a lattice growth model
f8,17g, which in turn is believed to share its long-wavelength
characteristics with the KPZ equation. Within the framework
of this standard mapping it follows that the growthvelocity
and the average slope of the interface are, respectively, given
by

v̄ = j , ]h = 1 − 2r.

Letting u]huleft/right denote the enforced boundary slopes, we
can get the joint slope-velocity distribution for the interface
model by substituting

r = s1 − ]hd/2, j = v̄,

a = su1 − ]huleftd/2, b = su1 + ]hurightd/2,

into the probability distribution for the ASEP. It is further
clear that when the average slope at the left boundary,
]hleft=1−2a, matches the slope at the right boundary,
]hright=2b−1—i.e., whena+b=1—we are at the trivial line
of the ASEP where the matrix-product measure reduces to a
product measure. Situations where more complicated bound-
ary conditions are relevant have recently been examined ex-
perimental and theoretical inf26,34g.

V. CONCLUSION

In this paper we have examined the joint probability dis-
tribution of the system-averaged density and current. We
have derived an exact expression for the joint probability
function for finite systems and also considered the thermo-
dynamic limit. This was done by introducing a relaxed op-
erator algebra, and it would be very interesting to examine if
the same “trick” could somehow be applied to the partially
asymmetric exclusion process. This is especially important
since this model interpolates between a ESS and NESS. The
development further shows that even if the normalization
constant does not act as a partition function in the normal
sense of giving moments through differentiation by a conju-
gate field, it nevertheless completely governs the fluctuations
through Eq.s14d. Sufficiently close to a phase transition, any
finite system will reach a point where the above- derived
asymptotic forms are not valid. Thus it would be interesting
to derive the full asymptotic form of the probability distribu-
tion, including the tails. We have also shown that the con-
tinuous transitions are second order in the sense of equilib-
rium statistical mechanics and that it is the density
fluctuations that display a discontinuity. Last, we wrote down
the translation of the probability density for the asymptotic
ASEP to the probability density of the KPZ equation in terms
of the average slope of the interface and the average interface
velocity.
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APPENDIX A: THE RELAXED OPERATOR ALGEBRA

The major problem with calculating the probability func-
tion as given in Eq.s10d is the appearance of the product of
the operators

F 1

1 − zD
G

X

D, F 1

1 − z̄E
G

X̄

E,

where all theD’s are to the left of all theE’s. By considering
this product we will uncover operator relations very similar
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to those of the original operator algebras2d. Using the origi-
nal algebra we can write

F 1

1 − zD
G

X

DEF 1

1 − z̄E
G

X̄

= F 1

1 − zD
G

X

DF 1

1 − z̄E
G

X̄

+ F 1

1 − zD
G

X

EF 1

1 − z̄E
G

X̄

.

sA1d

From the inversion relations5d we have

F 1

1 − mX
G

X

= 1 +mXF 1

1 − mX
G

X

+ OsmX+1d,

and using this in the right-hand side of Eq.sA1d it is easily
seen that Eq.sA1d is equivalent to

s1 − fz+ z̄gdF 1

1 − zD
G

X

DF 1

1 − z̄E
G

X̄

E

= F 1

1 − zD
G

X

D + F 1

1 − z̄E
G

X̄

E + OszX+1,z̄X̄+1d.

sA2d

It is now clear that the operatorss11d will satisfy the relation
s12d. In terms of the operatorss11d the central operator prod-
uct in Eq.s10d reads

F 1

1 − zD
G

N−1
DEF 1

1 − z̄E
G

L−N−1

=
D8E8

s1 − fz+ z̄gd2 .

APPENDIX B: GENERATING FUNCTIONAL

By using the definition of the generating functional for
ZL

ab Eq. s3d, and the integral representation of the joint prob-
ability function s14d, we can write the generating functional
for N andJ as

FL
absg,kd =

def

o
N,J=0

`

gNkJPL
absN,Jd

=
ab

ZL
abR

Cz,Cz̄

dzdz̄

s2pid2

1

sz̄− adsz− bd
1

z̄L+1

1

z− gz̄

3 Ga8b8S zz̄k

s1 − fz+ z̄gd2D .

The contours should be chosen such that the only enclosed
poles are the ones at the origins. This object has a rather
complicated analytical structure and for simplicity we have
restricted our efforts to the probability function.

APPENDIX C: EXACT PROBABILITY FUNCTION

In order to get the exact probability distribution forN and
J we need to expand the integrand of Eq.s14d around the

origins of both thez andz̄ planes. This is done in the present
section. First we write down the complete expressionfor the
probability function, given the exact form of the normalizing
constant as shown in Eq.s7d:

ZL
a8b8 = o

l=1

L

AL,lo
k=0

l
s1 − fz+ z̄gdl

sa − z̄dksb − zdl−k .

Thus we have

PL
absN,Jd =

ab

ZL
abo

l=1

L

AL,lo
k=0

l R
Cz,Cz̄

dzdz̄

s2pid2

1

zN+1−Jz̄L−N+1−J

3
1

sa − z̄dk+1sb − zdl−k+1s1 − fz+ z̄gd2J−l .

We proceed by considering the expansion factor by factor in
their respective Laurent series around the origins. The first
two factors are given by the expansion

1

sa − z̄dk+1 = o
c=0

`

Gk,csadz̄c,

with

Gk,csad = Sk + c

c
D 1

ak+c+1 ,

while the last factor expands as

1

s1 − fz+ z̄gd2J−l = o
a,e=0

`

H2J−l,a,ez
ez̄a,

with

HK,a,e = SK − 1 +a + e

a + e
DSa + e

e
D .

Considering the product of all three factors we arrive at

1

sa − z̄dk+1sb − zdl−k+1s1 − fz+ z̄gd2J−l

= o
c,a,d,e=0

`

Gk,csadGl−k,dsbdH2J−l,a,ez̄
c+azd+e

= o
c,d=0

`

o
a=c,e=d

`

Gk,csadGl−k,dsbdH2J−l,a−c,e−dz̄
aze

= o
a,e=0

` S o
c,d=0

a,e

Gk,csadGl−k,dsbdH2J−l,a−c,e−dDz̄aze.

The only terms in this series that will contribute to the prob-
ability density are the ones witha=N−J ande=L−N−J, and
thus we have the exact form of the probability function given
by Eq. s15d.
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